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Transport Coefficients for Inelastic Maxwell Mixtures

Vicente Garzó1 and Antonio Astillero2

Received April 14, 2004; accepted September 29, 2004

The Boltzmann equation for inelastic Maxwell models (IMM) is used to deter-
mine the Navier–Stokes transport coefficients of a granular binary mixture in
d-dimensions. The Chapman–Enskog method is applied to solve the Boltzmann
equation for states near the (local) homogeneous cooling state. The mass, heat,
and momentum fluxes are obtained to first order in the spatial gradients of
the hydrodynamic fields, and the corresponding transport coefficients are iden-
tified. There are seven relevant transport coefficients: the mutual diffusion, the
pressure diffusion, the thermal diffusion, the shear viscosity, the Dufour coeffi-
cient, the pressure energy coefficient, and the thermal conductivity. All these
coefficients are exactly obtained in terms of the coefficients of restitution and
the ratios of mass, concentration, and particle sizes. The results are compared
with known transport coefficients of inelastic hard spheres (IHS) obtained ana-
lytically in the leading Sonine approximation and by means of Monte Carlo
simulations. The comparison shows a reasonably good agreement between both
interaction models for not too strong dissipation, especially in the case of the
transport coefficients associated with the mass flux.

KEY WORDS: Navier–Stokes transport coefficients; granular mixtures; inelas-
tic Maxwell models; Boltzmann equation.

1. INTRODUCTION

The evaluation of the transport coefficients from the Boltzmann equation
for inelastic hard spheres (IHS) is quite involved. In fact, to get explicit
results one usually considers the leading order in a Sonine polynomial
expansion of the velocity distribution function. These difficulties increase
when one considers multicomponent systems since not only the number
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of transport coefficients is larger than for a single gas but they are also
functions of more parameters such as composition, masses, sizes, and the
coefficients of restitution. As in the elastic case, a possible way to par-
tially overcome these problems is to consider other interaction models that
simplify the complex mathematical structure of the Boltzmann collision
integrals for IHS. For this reason, the so-called inelastic Maxwell mod-
els (IMM) have been widely used in the past few years as a toy model
to characterize the influence of the inelasticity of collisions on the phys-
ical properties of granular fluids. The IMM share with elastic Maxwell
molecules the property that the collision rate is velocity independent but,
on the other hand, their collision rules are the same as for IHS. In this
sense, although these IMM do not correspond to any microscopic poten-
tial interaction, it has been shown by several authors(1–9) that the cost of
sacrificing physical realism is in part compensated by the amount of exact
analytical results.

Most of the studies carried out by considering IMM have been
devoted to homogeneous states, especially in the analysis of the overpop-
ulated high energy tails.(4,6–8,10,11) However, much less is known in the
case of inhomogeneous situations and, more specifically, on the depen-
dence of the transport coefficients on dissipation. For a monocomponent
granular gas subjected to simple shear flow, the IMM have been used to
calculate the rheological properties (shear and normal stresses) in three
dimensions.(12) More recently, this study has been extended(13) to multi-
component systems, the exact results of IMM showing a close agreement
with those obtained analytically for IHS in the first Sonine approxima-
tion(14) and by means of Monte Carlo simulations.(14,15) All these results
are restricted to steady shear flow problems without any limitation on
the strength of the shear rate. For general inhomogeneous problems and
in the case of a monocomponent gas, the Boltzmann equation for IMM
has been solved(16) from the Chapman–Enskog method(17) for states near
the (local) homogeneous cooling state. Explicit expressions of the Navier–
Stokes transport coefficients of IMM in d-dimensions have been obtained
for unforced systems as well as for systems driven by thermostats. In con-
trast to the findings of Ref. 13, the comparison with the transport coeffi-
cients of IHS(18,19) shows that their dependence on inelasticity is captured
by the IMM only in a mild qualitative way. This fact stimulates the deter-
mination of the exact expressions of the transport coefficients for inelastic
granular mixtures.

The goal of this paper is to derive the hydrodynamic equations for a
d-dimensional binary mixture of inelastic Maxwell gases at low-density. As
in the single gas case,(16) a normal solution to the coupled set of Boltz-
mann equations for the two species is obtained by using the standard
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Chapman–Enskog method(17) conveniently generalized to inelastic colli-
sions. In the first order of the spatial gradients of the hydrodynamic
fields, we get the corresponding Navier–Stokes hydrodynamic equations
with explicit expressions for the relevant transport coefficients of the mix-
ture. For molecular fluid mixtures, the specific set of gradients contribut-
ing to each flux is restricted by fluid symmetry, time reversal invariance
(Onsager relations), and the form of entropy production.(20) However, in
the case of inelastic collisions, only fluid symmetry holds and so there is
more flexibility in representing the fluxes and identifying the correspond-
ing transport coefficients. In the case of the pressure tensor, fluid symme-
try considerations implies that its form to first order in the gradients is
the same as for the monocomponent gas. In the case of mass and heat
fluxes, several different (but equivalent) choices of hydrodynamic fields can
be used and some care must be taken when comparing transport coeffi-
cients coming from different representations. As in the case of IHS,(21) we
take the gradients of the mole fraction, the (hydrostatic) pressure, the tem-
perature, and the flow velocity as the relevant ones. As a consequence,
in this representation there are seven independent scalar transport coeffi-
cients: the mutual diffusion, the pressure diffusion and the thermal diffu-
sion associated with the mass flux, the shear viscosity corresponding to
the pressure tensor and the Dufour coefficient, the thermal conductivity,
and the pressure energy coefficient associated with the heat flux. All these
coefficients are given in terms of the coefficients of restitution as well as
of the ratios of concentration, masses and particle sizes. In addition, as in
the previous study for IHS,(21) our theory takes into account the effect of
temperature differences (failure of energy equipartition) on the transport
coefficients, leading to additional dependencies of them on the concentra-
tion.

The plan of the paper is as follows. In Section 2 the Boltzmann equa-
tion for IMM and the macroscopic conservation laws are introduced. The
model includes average collision frequencies ωrs which can be freely fit-
ted to get good agreement with IHS. Here, we fix ωrs by the criterion
that the cooling rates ζrs of IMM be the same as those obtained for IHS
in the local equilibrium approximation. The homogenous solution of the
Boltzmann equation is analyzed in Section 3, where the temperature ratio
and the fourth cumulant (kurtosis) of the velocity distribution functions
are exactly obtained. Comparison with the results obtained for IHS(22,23)

shows an excellent agreement for the temperature ratio but significant dis-
crepancies with the fourth cumulant of IHS. Section 4 deals with the
application of the Chapman–Enskog method to get the transport coeffi-
cients of IMM. In Section 5, the dependence of some of these coefficients
on the parameters of the system is illustrated and compared with known
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results derived for IHS.(22,24–26) The comparison shows in general a quali-
tative good agreement, especially for the transport coefficients defining the
mass flux. The paper ends in Section 6 with a brief discussion on the
results reported in this paper.

2. INELASTIC MAXWELL MODELS FOR A GRANULAR BINARY

MIXTURE

Let us consider a binary mixture of inelastic Maxwell gases at low
density. The Boltzmann equation for IMM(3,4,10,27) can be obtained from
the Boltzmann equation for IHS by replacing the rate for collisions
between particles of species r and s by an average velocity-independent
collision rate, which is proportional to the square root of the “granu-
lar” temperature T . This means that a random pair of colliding parti-
cles undergoes inelastic collisions with a random impact direction. With
this simplification, the velocity distribution functions fr(r, v; t) (r =1,2) of
each species satisfy the following set of nonlinear Boltzmann kinetic equa-
tions:

(∂t + v ·∇) fr(r, v; t)=
∑

s

Jrs [v|fr(t), fs(t)] , (1)

where the Boltzmann collision operator Jrs [v|fr, fs ] is

Jrs [v1|fr, fs ] = ωrs(r, t;αrs)

ns(r, t)�d

∫
dv2

∫
dσ̂

×
[
α−1

rs fr (r, v′
1, t)fs(r, v′

2, t)−fr(r, v1, t)fs(r, v2, t)
]
. (2)

Here nr is the number density of species r, ωrs �= ωsr is an effective
collision frequency (to be chosen later) for collisions of type r-s, �d =
2πd/2/�(d/2) is the total solid angle in d-dimensions, and αrs = αsr � 1
refers to the constant coefficient of restitution for collisions between par-
ticles of species r with s. In addition, the primes on the velocities denote
the initial values {v′

1, v′
2} that lead to {v1, v2} following a binary collision:

v′
1 = v1 −µsr

(
1+α−1

rs

)
(σ̂ ·g12)σ̂ , v′

2 = v2 +µrs

(
1+α−1

rs

)
(σ̂ ·g12)σ̂ , (3)

where g12 = v1 − v2 is the relative velocity of the colliding pair, σ̂ is a unit
vector directed along the centers of the two colliding spheres, and µrs =
mr/(mr + ms). The collision frequencies ωrs can be seen as free parame-
ters in the model. Its dependence on the restitution coefficients αrs can
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be chosen to optimize the agreement with the results obtained from the
Boltzmann equation for IHS. Of course, the choice is not unique and may
depend on the property of interest.

There is another more refined version of the IMM(1,2,28) where the col-
lision rate has the same dependence on the scalar product (σ̂ · ĝ12) as in the
case of hard spheres. However, both versions of IMM lead to similar results
in problems as delicate as the high energy tails.(4) Therefore, for the sake of
simplicity, here we will consider the version given by Eqs. (2) and (3).

The relevant hydrodynamic fields in a binary mixture are the number
densities nr , the flow velocity u, and the granular temperature T . They are
defined in terms of the distribution fr as

nr =
∫

dvfr(v), (4)

ρu =
∑

r

ρrur =
∑

r

∫
dvmrvfr(v), (5)

nT = p =
∑

r

nrTr =
∑

r

mr

d

∫
dvV 2fr(v), (6)

where ρr = mrnr is the mass density of species r, n = n1 + n2 is the total
number density, ρ = ρ1 + ρ2 is the total mass density, V = v − u is the
peculiar velocity, and p is the hydrostatic pressure. Furthermore, the third
equality of Eq. (6) defines the kinetic temperatures Tr of each species,
which measure their mean kinetic energies.

The collision operators conserve the particle number of each species
and the total momentum, but the total energy is not conserved:

∫
dvJrs [v|fr, fs ] = 0, (7)

∑

r,s

∫
dvmrvJrs [v|fr, fs ] = 0, (8)

∑

r,s

∫
dv

1
2
mrV

2Jrs [v|fr, fs ] = −d

2
nT ζ, (9)

where ζ is identified as the “cooling rate” due to inelastic collisions
among all species. At a kinetic level, it is also convenient to introduce
the “cooling rates” ζr for the partial temperatures Tr . They are defined
as

ζr =
∑

s

ζrs =−
∑

s

1
dnrTr

∫
dvmrV

2Jrs [v|fr, fs ], (10)
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where the second equality defines the quantities ζrs . The total cooling rate
ζ can be written in terms of the partial cooling rates ζr as

ζ =T −1
∑

r

xrTrζr , (11)

where xr =nr/n is the mole fraction of species r.
From Eqs. (4) to (9), the macroscopic balance equations for the

binary mixture can be obtained. They are given by

Dtnr +nr∇ ·u + ∇ · jr
mr

=0, (12)

Dtu +ρ−1∇ ·P=0, (13)

DtT − T

n

∑

r

∇ · jr
mr

+ 2
dn

(∇ ·q +P :∇u)=−ζT . (14)

In the above equations, Dt = ∂t +u ·∇ is the material derivative,

jr =mr

∫
dv V fr(v) (15)

is the mass flux for species r relative to the local flow,

P=
∑

r

∫
dv mrVV fr(v) (16)

is the total pressure tensor, and

q =
∑

r

∫
dv

1
2
mrV

2V fr(v) (17)

is the total heat flux. The balance Eqs. (12)–(14) apply regardless of the
details of the model for inelastic collisions considered. However, the influ-
ence of the collision model appears through the dependence of the cooling
rate and the hydrodynamic fluxes on the coefficients of restitution.

As happens for elastic collisions,(29) the main advantage of using
IMM is that a velocity moment of order k of the Boltzmann collision
operator only involves moments of order less than or equal to k.(28)

This allows one to determine the Boltzmann collisional moments with-
out the explicit knowledge of the velocity distribution function. The first
few moments of the Boltzmann collision operator Jrs [fr, fs ] have been
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explicitly evaluated in Appendix A. In particular, according to Eq. (10),
the second moment of Jrs [fr, fs ] allows one to get a relationship between
the collision frequencies ωrs and the cooling rates ζrs . From Eq. (A.2),
one easily gets

ζrs = 2ωrs

d
µsr (1+αrs)

[
1− µsr

2
(1+αrs)

θr + θs

θs

+ µsr(1+αrs)−1
dρspr

jr · js

]
, (18)

where

θr = mr

γr

∑

s

m−1
s , (19)

pr =nrTr is the partial pressure of species r and γr ≡Tr/T .
In order to get explicit results, one still needs to fix the parameters

ωrs . The most natural choice to optimize the agreement with the IHS
results is to adjust the cooling rates ζrs for IMM, Eq. (18), to be the same
as the ones found for IHS.(22) Although the cooling rates are not exactly
known for IHS, a good estimate of them can be obtained by considering
the local equilibrium approximation for the velocity distribution functions
fr , i.e.,

fr(V)→nr

(
mr

2πTr

)d/2

exp

(
−mrV

2

2Tr

)
. (20)

In this approximation, one has(22)

ζ IHS
rs → 2�d√

πd
nsµsrσ

d−1
rs v0

(
θr + θs

θrθs

)1/2

(1+αrs)

[
1− µsr

2
(1+αrs)

θr + θs

θs

]
,

(21)

where v0(t)=√
2T (m1 +m2)/m1m2 is a thermal velocity defined in terms

of the temperature T (t) of the mixture. Thus, according to Eq. (18), the
collision frequencies ωrs are given by

ωrs =4xs

(
σrs

σ12

)d−1(
θr + θs

θrθs

)1/2

ν0, (22)

where ν0 is an effective collision frequency given by

ν0 = �d

4
√

π
nσd−1

12 v0. (23)

Upon deriving (22) use has been made of the fact that the mass flux jr
vanishes in the local equilibrium approximation (20). In the remainder of
this paper, we will take the choice (22) for ωrs .
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3. HOMOGENEOUS COOLING STATE

As a previous step to determine the Navier–Stokes transport coeffi-
cients from the Chapman–Enskog method,(17) one needs to analyze the
homogeneous solution of the Boltzmann Eq. (1). In this case (spatially iso-
tropic homogeneous states), the Boltzmann Eq. (1) becomes

∂tfr (v; t)=
∑

s

Jrs [v|fr, fs ]. (24)

From Eq. (24), one has

∂tT =−ζT , ∂tTr =−ζrTr . (25)

The time evolution of the temperature ratio γ ≡ T1(t)/T2(t) follows from
the second equality of Eq. (25):

∂t ln γ = ζ2 − ζ1. (26)

In addition, since the mass flux vanishes in the homogeneous state, Eq.
(18) gives the relation

ζr =
∑

s

ζrs =
∑

s

2ωrs

d
µsr (1+αrs)

[
1− µsr

2
(1+αrs)

θr + θs

θs

]
, (27)

where ωrs is given by Eq. (22).
The so-called homogeneous cooling state (HCS) qualifies as a normal

solution for which all the time dependence of fr(v; t) is through the global
temperature T (t). Consequently, it follows from dimensional analysis that
fr(v; t) has the scaling form

fr(v, t)=nrv
−d
0 (t)
r(v/v0(t)), (28)

where v0 is the thermal velocity previously introduced. The fact that the
time dependence of fr(v; t) only occurs through the temperature T (t)

(which is the relevant one at a hydrodynamic level) implies that the three
temperatures T1(t), T2(t) and T (t) are proportional to each other and
their ratios are all constant. One possibility is that all three temperatures
are equal, as in the case of elastic collisions. However, as we will see later,
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the partial temperatures are different. Since the temperature ratio must be
independent of time, Eq. (26) leads to the equality of the cooling rates:

ζ1(t)= ζ2(t)= ζ(t). (29)

When the expression (27) is substituted into (29), one gets a closed nonlin-
ear equation for γ whose numerical solution gives the dependence of the
temperature ratio on the parameters of the problem. Except for mechani-
cally equivalent particles, our results show that although both species have
a common cooling rate, their partial temperatures are clearly different.
This implies a breakdown of the energy equipartition. The violation of
energy equipartition in multicomponent granular systems(22,27,30–33) has
also been confirmed in computer simulations(23,34–36) and even observed in
real experiments in two(37) and three(38) dimensions. It must be remarked
that the fact that T1(t) �= T2(t) does not mean that there are additional
hydrodynamic degrees of freedom since the partial temperatures Tr can be
expressed in terms of the granular temperature T as

T1(t)= γ

1+x1(γ −1)
T (t), T2(t)= 1

1+x1(γ −1)
T (t). (30)

The problem is therefore to solve the Boltzmann equation for a dis-
tribution of the form (28) subject to the self-consistency constraint (29). In
terms of the reduced velocity v∗ = v/v0, the Boltzmann equation (24) for
the reduced distribution 
r defined in Eq. (28) becomes

1
2
ζ ∗ ∂

∂v∗ · (v∗
r

)=
∑

s

J ∗
rs [v∗|
r,
s ], (31)

with ζ ∗ = ζ/ν0. In addition,

J ∗
rs [
r,
s ]= ω∗

rs

�d

∫
dv∗

2

∫
dσ̂

[
α−1

rs 
r(v
′∗
1 )
s(v

′∗
2 )−
r(v

∗
1)
s(v

∗
2)
]
, (32)

where ω∗
r =ωr/ν0. Upon writing Eq. (31), we have accounted for the time

dependence of fr , which implies that

∂tfr =−ζT ∂T fr = 1
2
ζ

∂

∂v
· (vfr) . (33)

Although the exact form of the distribution 
r is not known, an
indirect information on the behavior of 
r is given through its velocity
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moments. In particular, the deviation of 
r with respect to its Maxwell-
ian form 
r,M can be characterized through the fourth cumulant

cr =2
[

4
d(d +2)

θ2
r 〈v∗4〉r −1

]
, (34)

where

〈v∗4〉r =
∫

dv∗v∗4
r(v
∗), (35)

and


r,M(v∗)=π−d/2θ
d/2
r e−θrv

∗2
. (36)

To get the fourth velocity moment, we multiply both sides of the Boltz-
mann equation (31) by v∗4 and integrate over the velocity. The result is

−2ζ ∗〈v∗4〉r =
∑

s

∫
dv∗v∗4J ∗

rs [v∗|
r,
s ]. (37)

The collisional moment appearing on the right-hand side of (37) is evalu-
ated in Appendix A with the result

∫
dv∗v∗4J ∗

rs [
r,
s ] = µsr(1+αrs)

d(d +2)
ω∗

rs

{
3µ3

sr (1+αrs)
3〈v∗4〉s

+
[
2d +3µ2

sr (1+αrs)
2 −6µsr(1+αrs)+4

]

× [µsr(1+αrs)−2] 〈v∗4〉r
+d(d +2)

4
µsrθ

−1
r θ−1

s (1+αrs)

[
2d+4−12µsr(1+αrs)

+6µ2
sr (1+αrs)

2
]}

. (38)

Substitution of Eq. (38) into Eq. (37) leads to a coupled set of linear
equations for 〈v∗4〉1 and 〈v∗4〉2 (or equivalently, for c1 and c2). The solu-
tion of this set gives c1 and c2 in terms of the parameter space of the
problem. In the one-dimensional case (d = 1), our results reduce to the
ones previously obtained by Marconi and Puglisi(32) from the so-called
Maxwell scalar model (i.e., by taking ωrs ∝ ns). Moreover, for mechani-
cally equivalent particles (σ1 =σ2, m1 =m2, α11 =α22 =α12 =α), the results
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obtained by Santos(16) for the single gas case are recovered, namely, γ =1
and

c1 = c2 = 12(1−α)2

4d −7+3α(2−α)
. (39)

A full presentation of the results is difficult due to the many parame-
ters involved in the problem: α11, α12, α22, m1/m2, x1, and σ1/σ2. For the
sake of concreteness, henceforth we will consider the case α11 =α22 =α12 ≡
α. In Fig. 1 we show the dependence of γ on α in the three-dimensional
case for x1 = 2

3 , σ1/σ2 = 1 and three different values of the mass ratio
m1/m2. We include the analytical results obtained for IMM and IHS(22) as
well as the results (symbols) obtained(23) by numerically solving the Boltz-
mann equation by means of the direct simulation Monte Carlo (DSMC)
method.(39) It is apparent that the analytical results for IMM and IHS
are practically indistinguishable over the range of values of α considered
and that the agreement of both approaches with simulation is excellent.
We also observe that the extent of the equipartition violation is greater
when the mass disparity is large. In addition, the temperature of the
excess species is larger (smaller) than that of the defect species when the
excess species is heavier (lighter) than the defect species. The dependence
of the coefficients c1 and c2 on the coefficient of restitution α is plotted in
Fig. 2 in the three-dimensional case for x1 = 1

2 , σ1/σ2 = 1 and m1/m2 = 2.
It can be observed that the HCS of IMM deviates from the Gaussian dis-
tribution (which corresponds to c1 = c2 = 0) much more than the HCS
of IHS. This is consistent with the fact that the former models have a
stronger overpopulated high energy tail(4,10,32) than the latter.(40) For both
interaction models, the deviation of 
r from its Gaussian form is more
significant for the heavy species. We also see that the value of the kurtosis
cr predicted by the IMM exhibits quantitative discrepancies with the one
found for IHS, especially for strong dissipation.

4. CHAPMAN–ENSKOG SOLUTION OF THE BOLTZMANN

EQUATION FOR IMM

In this section, the Chapman–Enskog method(17) generalized to inelas-
tic collisions will be applied to the set of Boltzmann equations (1) for
IMM to get explicit expressions for the Navier–Stokes transport coeffi-
cients as functions of the coefficients of restitution and the parameters of
the mixture (masses, composition, and sizes).

The balance Eqs (12)–(14) become a closed set of hydrodynamic
equations for the fields nr , u, and T once the fluxes (15)–(17) and the
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(c)

(b)

(a)

α

γ

Fig. 1. Plot of the temperature ratio γ =T1/T2 versus the coefficient of restitution α for d =
3, x1 = 2

3 , σ1/σ2 =1 and three different values of the mass ratio m1/m2: (a) m1/m2 =10 (cir-
cles), (b) m1/m2 =2 (squares), and (c) m1/m2 =0.1 (triangles). The solid lines are the results
derived here for IMM, the dashed lines correspond to the results obtained for IHS from the
first Sonine approximation,(22) and the symbols refer to Monte Carlo simulations for IHS.(23)

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

c2

c1

α

Fig. 2. Plot of the coefficients cr versus the coefficient of restitution α for d =3, x1 = 1
2 , σ1/σ2 =1

and m1/m2 =2. The solid lines are the results derived here for IMM, the dashed lines correspond
to the results obtained for IHS from the first Sonine approximation,(22) and the symbols refer to
Monte Carlo simulations for IHS.(23)The circles correspond to c1 while the squares correspond to
c2.

cooling rate ζ are obtained in terms of the hydrodynamic fields and their
gradients. As noted in Section 2, while the pressure tensor has the same
form as for a one-component system, there is greater freedom in represent-
ing the heat and mass fluxes. Here, as done in the IHS case,(21) we take
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the gradients of the mole fraction x1 = n1/n, the pressure p, the temper-
ature T , and the flow velocity u as the relevant ones. Thus, in this repre-
sentation, the phenomenological constitutive relations for the fluxes in the
low-density regime have the forms(20)

j1 = −m1m2n

ρ
D∇x1 − ρ

p
Dp∇p − ρ

T
D′∇T , j2 =−j1, (40)

q = −T 2D′′∇x1 −L∇p −λ∇T , (41)

Pij = pδij −η

(
∇j ui +∇iuj − 2

d
δij∇ ·u

)
. (42)

The transport coefficients in these equations are the diffusion coefficient
D, the thermal diffusion coefficient D′, the pressure diffusion coefficient
Dp, the Dufour coefficient D′′, the thermal conductivity λ, the pressure
energy coefficient L, and the shear viscosity η.

The Chapman–Enskog method assumes the existence of a normal
solution in which all space and time dependence of the distribution func-
tion occurs through a functional dependence on the hydrodynamic fields

fr(r, v, t)=fr [v|x1(t), p(t), T (t),u(t)]. (43)

This functional dependence can be made local in space and time by means
of an expansion in gradients of the fields. Thus, we write fr as a series
expansion in a formal parameter ε measuring the nonuniformity of the
system,

fr =f (0)
r + ε f (1)

r + ε2 f (2)
r +· · · , (44)

where each factor of ε means an implicit gradient of a hydrodynamic field.
The local reference state f

(0)
r is chosen to give the same first moments as

the exact distribution fr , or equivalently, the remainder of the expansion
must obey the orthogonality conditions

∫
dv
[
fr(v)−f (0)

r (v)
]
=0, (45)

∑

r

∫
dvmrv

[
fr(v)−f (0)

r (v)
]
=0, (46)

∑

r

∫
dv

mr

2
v2

[
fr(v)−f (0)

r (v)
]
=0. (47)
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Use of the expansion (44) in the definitions of the fluxes (15)–(17) and
the cooling rate (10) gives the corresponding expansion for these quan-
tities. The time derivatives of the fields are also expanded as ∂t = ∂

(0)
t +

ε∂
(1)
t +· · · . The coefficients of the time derivative expansion are identified

from the balance Eqs (12)–(14) after expanding the fluxes and the cooling
rate ζ . In particular, the macroscopic balance equations to zeroth order
become

∂
(0)
t xr =0, ∂

(0)
t u =0, T −1∂

(0)
t T =p−1∂

(0)
t p =−ζ (0). (48)

Here, we have taken into account that in the Boltzmann equation (1) the
effective collision frequency ωrs ∝ nsT

1/2 ∝ xspT −1/2 is assumed to be a
functional of fr and fs only through the mole fraction xs , the pressure
p, and the temperature T . As a consequence, ω

(0)
rs =ωrs , and ω

(1)
rs =ω

(2)
rs =

· · ·=0.
In the zeroth order, f

(0)
r obeys the kinetic equation

1
2
ζ (0) ∂

∂V
·
(

Vf (0)
r

)
=
∑

s

Jrs [f (0)
r , f (0)

s ], (49)

where use has been made of the relation (33) with ζ (0) =ζ
(0)
r given by Eq.

(27). The distribution f
(0)
r is given by the scaling form (28) except that

nr → nr(r, t) and T → T (r, t) are local quantities and v → V = v − u(r, t).
Since f

(0)
r is isotropic, it follows that

j(0)

1 =0, q(0) =0, P
(0)
ij =pδij , (50)

where p =nT is the hydrostatic pressure.
In the first order, the distribution function f

(1)
r verifies the kinetic

equation

(
∂

(0)
t +Lr

)
f (1)

r +Mrf
(1)
s =−

(
D

(1)
t +V ·∇

)
f (0)

r , (51)

where it is understood that r �= s. Here, D
(1)
t = ∂

(1)
t + u · ∇ and we have

introduced the linearized collision operators

Lrf
(1)
r =−

(
Jrr [f (0)

r , f (1)
r ]+Jrr [f (1)

r , f (0)
r ]+Jrs [f (1)

r , f (0)
s ]

)
, (52)

Mrf
(1)
s =−Jrs [f (0)

r , f (1)
s ]. (53)
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The action of the material time derivatives D
(1)
t on the hydrodynamic

fields is

D
(1)
t x1 =0,

d

d +2
D

(1)
t ln p = d

2
D

(1)
t ln T =−∇ ·u, D

(1)
t u =−ρ−1∇p.

(54)

In these equations use has been made of the results (50) and the identity
ζ (1) =0. The last equality easily follows from Eq. (18). The right-hand side
of Eq. (51) can be evaluated by using Eqs. (54) and so the equation for
f

(1)
r can be written as

(
∂

(0)
t +Lr

)
f (1)

r +Mrf
(1)
s =Ar ·∇x1 +Br ·∇p +Cr ·∇T +Dr,ij∇iuj , (55)

where

Ar (V) = −
(

∂

∂x1
f (0)

r

)

p,T

V, (56)

Br (V) = − 1
p

[
f (0)

r V + p

ρ

(
∂

∂V
f (0)

r

)]
, (57)

Cr (V) = 1
T

[
f (0)

r + 1
2

∂

∂V
·
(

Vf (0)
r

)]
V, (58)

Dr,ij (V) = ∂

∂Vj

(
Vif

(0)
r

)
− 1

d
δij

∂

∂V
·
(

Vf (0)
r

)
. (59)

It is worth noting that Eqs. (55)–(59) have the same structure as that of
the Boltzmann equation for IHS.(21) The only difference between both
models lies in the explicit form of the linearized operators Lr and Mr .

Now we are in conditions to get the expressions for the mass flux,
the pressure tensor, and the heat flux in the first order of gradients. These
expressions allows one to identify the relevant transport coefficients of the
mixture through Eqs. (40)–(42).

5. NAVIER–STOKES TRANSPORT COEFFICIENTS

This section is devoted to the determination of the Navier–Stokes
transport coefficients associated with the irreversible fluxes. We only dis-
play here the final expressions for the transport coefficients with technical
details given in Appendix B.
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To first order in the hydrodynamic gradients, the mass flux has the
form given by Eq. (40). The transport coefficients D, Dp, and D′ are given
by

D = ρ

m1m2n

(
ν − 1

2
ζ (0)

)−1


p

(
∂

∂x1
x1γ1

)

p,T

+ρ

(
∂ζ (0)

∂x1

)

p,T

(
Dp +D′)



 ,

(60)

Dp = n1T1

ρ

(
1− m1nT

ρT1

)(
ν − 3

2
ζ (0) + ζ (0)2

2ν

)−1

, (61)

D′ =− ζ (0)

2ν
Dp, (62)

where

ν = ρω12

dρ2
µ21(1+α12)= 4

d

ρ

n(m1 +m2)

(
θ1 + θ2

θ1θ2

)1/2

ν0(1+α12). (63)

Since j1 =−j2 and ∇x1 =−∇x2, D should be symmetric while Dp and D′
should be antisymmetric with respect to the exchange 1 ↔ 2. This can be
easily verified by noting that n1T1 +n2T2 =nT . For elastic collisions, ζ (0) =
0, T1 =T2 =T , and so Eqs. (60)–(62) become

D = d

8
m1 +m2

m1m2

p

ν0
, (64)

Dp = d

8

(
m2

2 −m2
1

) n1n2p

ρ3ν0
, D′ =0, (65)

where use has been made again of Eq. (22). In the case of mechanically
equivalent particles, γ = 1, Dp =D′ = 0, so that Eq. (60) gives the expres-
sion of the self-diffusion coefficient

D = p

m

(
ν − 1

2
ζ (0)

)−1

. (66)

The pressure tensor has the form (42) with the shear viscosity coeffi-
cient η given by

η=η1 +η2. (67)
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The expression of the partial contributions ηr is

η1 =2
p1(2τ22 − ζ (0))−2p2τ12

ζ (0)2 −2ζ (0)(τ11 + τ22)+4(τ11τ22 − τ12τ21)
, (68)

where the quantities τ11 and τ12 are defined by Eqs. (B.12) and (B.13),
respectively. A similar expression can be obtained for η2 by just making
the changes 1 ↔ 2. For mechanically equivalent particles, Eq. (68) yields
η1/x1 =η2/x2 =η, where

η= p

νη − 1
2ζ (0)

, νη = (1+α)(d +1−α)

d(d +2)
ω, (69)

and ω = ωrs/xs . The expression (69) coincides with the one previously
derived in the single gas case.(16)

The case of the heat flux is more involved. Its form is given by Eq.
(41) where the coefficients D′′, L and λ are

D′′ =D′′
1 +D′′

2 , L=L1 +L2, λ=λ1 +λ2. (70)

By using matrix notation, the coupled set of six equations for the
unknowns

{D′′
1 ,D′′

2 ,L1,L2, λ1, λ2} (71)

can be written as

�σσ ′Xσ ′ =Yσ . (72)

Here, Xσ ′ is the column matrix defined by the set (71) and �σσ ′ is the
square matrix

�=





T 2( 3
2 ζ (0) −β11) −T 2β12 p

(
∂ζ (0)

∂x1

)

p,T
0 T

(
∂ζ (0)

∂x1

)

p,T
0

−T 2β21 T 2( 3
2 ζ (0) −β22) 0 p

(
∂ζ (0)

∂x1

)

p,T
0 T

(
∂ζ (0)

∂x1

)

p,T

0 0 5
2 ζ (0) −β11 −β12 T ζ (0)/p 0

0 0 −β21
5
2 ζ (0) −β22 0 T ζ (0)/p

0 0 −pζ (0)/2T 0 ζ (0) −β11 −β12

0 0 0 −pζ (0)/2T −β21 ζ (0) −β22





.

(73)
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The column matrix Y is

Y =





Y1
Y2
Y3
Y4
Y5
Y6




, (74)

where

Y1 = m1m2n

ρ
A12D − d +2

2
nT 2

m1

∂

∂x1

[(
1+ c1

2

)
x1γ

2
1

]
, (75)

Y2 = −m1m2n

ρ
A21D − d +2

2
nT 2

m2

∂

∂x1

[(
1+ c2

2

)
x2γ

2
2

]
, (76)

Y3 = ρ

p
A12Dp − d +2

2

n1T
2
1

m1p

(
1− m1p

ρT1
+ c1

2

)
, (77)

Y4 = −ρ

p
A21Dp − d +2

2

n2T
2

2

m2p

(
1− m2p

ρT2
+ c2

2

)
, (78)

Y5 = ρ

T
A12D

′ − d +2
2

n1T
2
1

m1T

(
1+ c1

2

)
, (79)

Y6 = − ρ

T
A21D

′ − d +2
2

n2T
2
2

m2T

(
1+ c2

2

)
. (80)

The expressions of the quantities βrs and Ars are given in Appendix B.
The solution to Eq. (72) is

Xσ =
(
�−1

)

σσ ′ Yσ ′ . (81)

This relation provides an explicit expression for the coefficients D′′
r , Lr

and λr in terms of the coefficients of restitution and the parameters of
the mixture. From these expressions one easily gets the transport coeffi-
cients D′′, L, and λ from Eq. (70). As expected, Eqs. (72)–(80) show that
D′′ is antisymmetric with respect to the change 1 ↔ 2, while L and λ are
symmetric. This implies that in the case of mechanically equivalent par-
ticles, the Dufour coefficient D′′ vanishes. Furthermore, in this limit, Eq.
(81) leads to the following expression for the heat flux

q =−κ∇T −µ∇n, (82)
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where

κ = λ+nL= d +2
2

p

m

1+ c

νκ −2ζ (0)
, (83)

µ = T L= T

n

κ(ζ (0) + 1
2cνκ)

(1+ c)(νκ − 3
2ζ (0))

, (84)

with

νκ = 4(d −1)+ (8+d)(1−α)

4d +4(1−α)
νη. (85)

Note that upon writing Eq. (82) use has been made of the relation ∇p =
n∇T +T ∇n. Again, Eqs. (82)–(85) coincide with results derived for a sin-
gle gas.(16) Using Eqs. (83)–(85), it can be seen that the coefficients κ and
µ diverge for d =2 and d =3 when α=α0 = (4−d)/3d and so, both coeffi-
cients become negative for 0 � α < α0. This unphysical behavior could be
due to the failure of the hydrodynamic description for values of the coeffi-
cient of restitution smaller than α0 or perhaps to the existence of a cer-
tain type of hydrodynamic instability. However, given that the value of α0
is quite small (α0 = 1

3 at d = 2 and α0 = 1
9 at d = 3) this singular behav-

ior could be interpreted as a hydrodynamic breakdown indeed. Elucidation
of this point requires further analysis. It must be remarked that the above
drawback is absent for IHS since all the transport coefficients are regular
functions of α for all d.

6. COMPARISON WITH THE TRANSPORT COEFFICIENTS FOR IHS

The expressions for the transport coefficients of IHS described by
the Boltzmann equation have been obtained by Garzó and Dufty(21) in
the leading Sonine approximation for a three-dimensional system. These
expressions have been then evaluated for a variety of mass and diameter
ratios in the cases of the diffusion coefficient(26) and the shear viscosity
coefficient,(25) showing quite a good agreement with Monte Carlo simula-
tions. In this section, we compare the results derived here for IMM for the
transport coefficients entering in the mass and momentum fluxes, namely,
D,Dp,D′, and η with those obtained for IHS in the case d =3. As in the
cases studied in Section 3, we consider for the sake of simplicity a com-
mon coefficient of restitution, i.e., α11 =α12 =α22 ≡α.

Let us consider first, the diffusion coefficient D in the limit cases
of self-diffusion (mechanically equivalent particles) and tracer concentra-
tion (x1 →0). Fig. 3 shows the reduced self-diffusion coefficient D(α)/D(1)
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Fig. 3. Plot of the reduced self-diffusion coefficient D(α)/D(1) as a function of the coeffi-
cient of restitution α in the three-dimensional case for IMM (solid line) and for IHS in the
first Sonine approximation (dashed line)(41) and in the second Sonine approximation (dotted
line).(26) The symbols refer to Monte Carlo simulations for IHS.(26,41)

as a function of the coefficient of restitution α. Here, D(1) refers to
the self-diffusion coefficient (66) for elastic collisions. We include the
results obtained for IHS by using the first Sonine approximation (dashed
line),(24,41) the second Sonine approximation (dotted line) and by Monte
Carlo simulations (symbols).(26) We observe that the agreement between
the predictions of the first Sonine approximation for IHS and for IMM is
excellent in the whole range of values of α analyzed. Moreover, both theo-
ries compare quite well with computer simulations even beyond the quasi-
elastic limit (say for instance, α � 0.8). However, as dissipation increases,
the agreement between theory and simulation is improved when one con-
siders the second Sonine approximation. For mechanically different parti-
cles, in Fig. 4 we plot D(α)/D(1) versus α in the tracer limit (x1 →0) for
m1/m2 = 8 and σ1/σ2 = 2 as given by the exact results for IMM, the sec-
ond Sonine approximation for IHS(26) and by Monte Carlo simulations.
We see that both theories are practically indistinguishable and present an
excellent agreement with simulation data.

Beyond the above two special cases, Figs. 5–6 show the dependence
of the reduced coefficients D(α)/D(1), Dp(α)/Dp(1), and −D∗(α) on the
coefficient of restitution for σ1 =σ2, x1 = 0.2, and two values of the mass
ratio (m1/m2 = 0.5 and 4). Here, Dp(1) is given by the first equality of
Eq. (65) and D∗(α)=−(ζ (0)/2ν)Dp(α)/Dp(1)=−D′(α)/Dp(1). The solid
lines correspond to the IMM results while the dashed lines refer to the
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Fig. 4. Plot of the reduced diffusion coefficient D(α)/D(1) as a function of the coefficient
of restitution α in the three-dimensional case for σ1/σ2 =2, x1 =0 (tracer limit) and m1/m2 =
8. The solid line corresponds to the exact results obtained here for IMM while the dashed
line is the result derived for IHS in the second Sonine approximation.(26) The symbols refer
to Monte Carlo simulations for IHS.(26)
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Fig. 5. Plot of the reduced diffusion coefficient D(α)/D(1) as a function of the coefficient
of restitution α in the three-dimensional case for σ1 = σ2, x1 = 0.2, and two different values
of the mass ratio: m1/m2 =0.5 and m1/m2 =4. The solid lines correspond to the exact results
obtained here for IMM while the dashed lines are the results derived for IHS in the first So-
nine approximation.(21)

results obtained for IHS in the first Sonine approximation.(21) We observe
that, in general, the qualitative behavior of IHS is well captured by the
IMM. At a quantitative level, for not strong dissipation (say for instance,
α � 0.8) the agreement between the results derived for IMM and IHS
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Fig. 6. Plot of the reduced pressure diffusion coefficient Dp(α)/Dp(1) as a function of the
coefficient of restitution α in the three-dimensional case for σ1 =σ2, x1 =0.2, and two differ-
ent values of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The solid lines correspond to the
exact results obtained here for IMM while the dashed lines are the results derived for IHS in
the first Sonine approximation.(21)

is again quite good, especially in the case of m1/m2 = 0.5. Nevertheless,
the discrepancies between both interaction models increase as the coeffi-
cient of restitution decreases. For instance, at α = 0.5, the discrepancies
for D(α)/D(1), Dp(α)/Dp(1), and −D∗(α) are about 4%, 5%, and 8%,
respectively, for m1/m2 =4, while they are about 1%, 3%, and 3%, respec-
tively, for m1/m2 =0.5.

The dependence of the reduced shear viscosity coefficient η(α)/η(1)

on dissipation is plotted in Fig. 8 for σ1 = σ2, x1 = 0.2, and for two val-
ues of the mass ratio (m1/m2 =0.5 and 4). Here, η(1) is the corresponding
value of the shear viscosity coefficient for elastic collisions. Although again
the IMM predictions compare qualitatively well with the ones derived for
IHS, we observe that in general the discrepancies for both interaction
models at the level of the shear viscosity are larger than those found for
the transport coefficients of the mass flux. The discrepancies observed in
Fig. 8 are similar to those found in the single gas case.(16)

7. DISCUSSION

The primary objective of this work has been to derive the hydrody-
namic equations of a granular binary mixture from the Boltzmann kinetic
theory for inelastic Maxwell models (IMM). In the Boltzmann equation
for IMM, the collision rate of IHS is replaced by an effective collision rate
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Fig. 7. Plot of the reduced coefficient −D∗(α)=−D′(α)/Dp(1) as a function of the coeffi-
cient of restitution α in the three-dimensional case for σ1 =σ2, x1 =0.2, and two different val-
ues of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The solid lines correspond to the exact
results obtained here for IMM while the dashed lines are the results derived for IHS in the
first Sonine approximation.(21)
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Fig. 8. Plot of the reduced shear viscosity coefficient η(α)/η(1) as a function of the coeffi-
cient of restitution α in the three-dimensional case for σ1 =σ2, x1 =0.2, and two different val-
ues of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The solid lines correspond to the exact
results obtained here for IMM while the dashed lines are the results derived for IHS in the
first Sonine approximation.(25)

independent of the relative velocity of the two colliding particles. As in the
elastic case,(29) this property allows us to get exactly the velocity moments
of the Boltzmann collision integrals without the explicit knowledge of
the velocity distribution function. Here, the Chapman–Enskog method has
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been applied to get a normal solution of the Boltzmann equation for states
near the local homogenous cooling state. The derivation of the Navier–
Stokes hydrodynamic equations consists of two steps. As a first step, the
reference homogenous cooling state for a mixture of inelastic Maxwell
gases is analyzed to provide the proper basis for description of transport
due to spatial inhomogeneities. As in the case of IHS,(22) our solution for
the homogeneous state shows that the kinetic temperatures for each spe-
cies are clearly different so that the total energy is not equally distributed
between both species (breakdown of energy equipartition). In addition, we
also compute the fourth cumulant of the velocity distribution functions,
which is a measure of the deviation of the distributions from the Max-
wellian form. Once the reference state is well characterized, as a second
step we obtain exact expressions for the mass flux, the pressure tensor,
and the heat flux in the first order of the hydrodynamic gradients (Navier–
Stokes order). From these expressions we identify the seven relevant trans-
port coefficients of the problem, namely the mutual diffusion D, Eq. (60),
the pressure diffusion Dp, Eq. (61), the thermal diffusion D′, Eq. (62), the
shear viscosity η, Eqs. (67) and (68), the Dufour coefficient D′′, the pres-
sure energy coefficient L, and the thermal conductivity λ as given by Eqs.
(70)–(81), respectively. These expressions are exact (within the context of
IMM) and constitute the main goal of this paper. This contrasts with the
previous results derived for IHS,(21) where the transport coefficients have
been approximately obtained by considering the leading terms in a Sonine
polynomial expansion of the distribution function.

The purpose of our work is twofold. First, the evaluation of the
transport coefficients for mixtures of IMM is worthwhile studying by itself
as a simple model to gain some insight into the influence of collisional
cooling on the transport properties of the system. Second, the compari-
son between the exact results for IMM with the results obtained for IHS
by using approximate analytical methods allows us to assess the degree of
reliability of IMM to reproduce the relevant behavior of IHS in the con-
text of granular mixtures. Recent results(13) derived for multicomponent
systems in the simple shear flow problem show a good agreement between
both interaction models over a wide range values of the parameter space.

To make contact with the results obtained for IHS(21) one needs to fix
the collision frequencies ωrs . These quantities can be seen as free parame-
ters of the model to be adjusted to optimize the agreement with IHS. As
in the study made in Ref. 13, here we have chosen ωrs to reproduce the
cooling rates ζrs of IHS in the local equilibrium approximation, Eq. (21).
An exploration of the dependence of the seven transport coefficients on
the full parameter space (mass ratio, diameters, concentrations, coefficients
of restitution) is straightforward but perhaps beyond the scope of this
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presentation. Here, we have focused on the dependence of the coefficients
D, Dp, D′, and η on the common restitution coefficient α for different val-
ues of composition, sizes, and masses. The comparison with known results
for IHS(22,25,26) has been illustrated in Figs. 3–8. In addition, Monte Carlo
simulations have been also included in some plots. The comparison shows
that, in general, the IMM predictions are reasonably good for not too
large dissipation (say, α�0.8), especially for the transport coefficients asso-
ciated with the mass flux (first-degree velocity moment). The discrepancies
between both interaction models increase in the case of the shear viscosity
coefficient, which is related to a second-degree moment (pressure tensor).
However, the IMM results still capture qualitatively well the dependence
of η on α for IHS since the discrepancies between both models are about
4% at α=0.8 and about 9% at α=0.5. As in the monocomponent case,(16)

more significant disagreement between IMM and IHS are expected when
one compares higher degree moments, such as the heat flux. To show these
discrepancies, in Fig. 9 we plot the reduced coefficients κ(α)/κ(1) and
µ∗ =nµ/T κ(1) for d =3 in the single gas case. Here, κ(α) is given by Eq.
(83) while the coefficient µ(α) is given by Eq. (84). As was emphasized in
Ref. 16, the trends observed for IHS are strongly exaggerated by the IMM,
where κ and µ diverge at α = 1

9 .
A simple application of the results obtained in this paper would be

the determination of the dispersion relations for the hydrodynamic equa-
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Fig. 9. Plot of the reduced coefficients κ(α)/κ(1) and µ∗ = nµ/T κ(1) as a function of the
coefficient of restitution α in the three-dimensional case for a single gas. The solid lines
correspond to the exact results obtained for IMM(16) while the dashed lines are the results
derived for IHS in the first Sonine approximation.(18)
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tions linearized about a homogeneous state. This analysis would allow us
to identify the conditions for stability as functions of the wave vector, the
dissipation, and the parameters of the mixture. Another possible direction
of study would be to check the validity of Onsager’s reciprocal relations(20)

between the different transport coefficients associated with the mass and
heat fluxes. Since the system is not time reversal invariant, violation of On-
sager’s relations is expected for inelastic collisions. The goal would be to
assess the influence of dissipation on such violation. We plan to work on
these issues in the next future.

APPENDIX A. COLLISIONAL MOMENTS IN THE INELASTIC

MAXWELL MODEL

In this Appendix we will determine the collisional integrals of mrV,
mrVV, and mrV

2V appearing in the evaluation of the transport coeffi-
cients. The two first integrals were already obtained by one of the authors
in a previous paper(13) on the analysis of rheological properties. Now, for
the sake of completeness, we display their explicit expressions:

∫
dvmrVJrs [fr, fs ] = − ωrs

ρsd
µsr (1+αrs) (ρs jr −ρr js) , (A.1)

∫
dvmrVVJrs [fr, fs ] = − ωrs

ρsd
µsr (1+αrs) {2ρsPr − (jr js + js jr )

− 2
d +2

µsr(1+αrs) [ρsPr +ρrPs − (jr js + js jr )

+
[
d

2
(ρrps +ρspr)− jr · js

]
�
]}

, (A.2)

where � is the d ×d unit tensor. It only remains here to get the collisional
integral Qrs corresponding to the heat flux:

Qrs ≡
∫

dv
1
2
mrV

2VJrs [v|fr, fs ]. (A.3)

To simplify its calculation, a useful identity for an arbitrary function h(v)
is given by
∫

dv1h(v1)Jrs [v1|fr , fs ]= ωrs

ns�d

∫
dv1

∫
dv2fr(v1)fs(v2)

∫
dσ̂

[
h(v′′

1)−h(v1)
]
,

(A.4)

with

v′′
1 = v1 −µsr(1+αrs)(σ̂ ·g12)σ̂ , (A.5)
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and g12 = v1 − v2. Now, we particularize to h(V) = 1
2mrVV 2. In this case,

using (A.4) one has

Qrs = ωrs

ns�d

mr

2

∫
dv1

∫
dv2fr(v1)fs(v2)

∫
dσ̂

(
V ′′2

1 V′′
1 −V 2

1 V1

)
.

(A.6)

From the scattering rule (A.5) it follows that

V ′′2
1 V′′

1 −V 2
1 V1 = −µsr(1+αrs)(σ̂ ·g12)

{[
V 2

1 −2µsr(1+αrs)(σ̂ ·g12)(σ̂ ·V1)

+µ2
sr (1+αrs)

2(σ̂ ·g12)
2
]
σ̂

+ [2(σ̂ ·V1)−µsr(1+αrs)(σ̂ ·g12)] V1

}
. (A.7)

To perform the angular integration, one needs the results

∫
dσ̂ (σ̂ ·g12)

k σ̂ = Bk+1g
k−1
12 g12, (A.8)

∫
dσ̂ (σ̂ ·g12)

k σ̂ σ̂ = Bk

k +d
gk−2

12

(
kg12g12 +g2

12�
)

, (A.9)

where(4)

Bk =
∫

dσ̂ (σ̂ · ĝ12)
k =�dπ−1/2

�
(

d
2

)
�
(

k+1
2

)

�
(

k+d
2

) . (A.10)

Taking into account Eqs. (A.7) and (A.8)–(A.10), the integration over σ̂

in Eq. (A.6) leads to

Qrs = − ωrs

nsd(d +2)

mr

2
µsr(1+αrs)

∫
dv1

∫
dv2fr(v1)fs(v2)

×
[
(d +2)V 2

1 g12 −4µsr(1+αrs) (g12 ·V1)g12

−(d +4)µsr (1+αrs)g
2
12V1

+3µ2
sr (1+αrs)

2g2
12g12 +2(d +2) (g12 ·V1)V1

]
. (A.11)
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The corresponding integrations over velocity give the relations
∫

dv1

∫
dv2

mr

2
V 2

1 g12fr(v1)fs(v2) = nsqr − d

2ms

pr js , (A.12)
∫

dv1

∫
dv2

mr

2
(g12 ·V1)g12fr(v1)fs(v2) = nsqr− 1

2ms

(dpr js+Pr · js−Ps · jr ) ,

(A.13)∫
dv1

∫
dv2

mr

2
g2

12V1fr(v1)fs(v2) = nsqr + 1
2ms

(dps jr −2Pr · js) , (A.14)
∫

dv1

∫
dv2

mr

2
(g12 ·V1)V1fr(v1)fs(v2) = nsqr − 1

2ms

Pr · js , (A.15)
∫

dv1

∫
dv2

mr

2
g2

12g12fr(v1)fs(v2) = nsqr − mr

ms

nrqr − 1
2ms

(dpr js −dps jr

+2Pr · js −2Ps · jr ) . (A.16)

From Eqs. (A.12)–(A.15) one finally gets the expression of Qrs :

Qrs = ωrs

ρs

µsr

d(d+2)
(1+αsr ){[µsr(1+αrs)(d+8−3µsr(1+αrs))−3(d+2)]ρsqr

+3µ2
sr (1+αsr )

2ρrqs + d

2
[µsr(1+αrs)(3µsr(1+αrs)−4)+d+2]pr js

+d

2
µsr(1+αrs)[d+4−3µsr(1+αrs)]ps jr

+[µsr(1+αrs)(3µsr(1+αrs)−(d+6))+d+2]Pr · js
+µsr(1+αrs)[2−3µsr(1+αrs)]Ps · jr}, (A.17)

where pr =nrTr . In the absence of diffusion and for mechanically equiva-
lent particles, the collisional moment Qrs ≡Q reduces to

Q=−ω
(d −1)

d(d +2)
(1+α)

[
1+ d +8

d −1
1−α

4

]
q. (A.18)

This expression coincides with the one previously derived in the mono-
component case.(16)

Finally, let us evaluate the (dimensionless) collision integral of v4 in
the HCS, Eq. (37):

�rs ≡
∫

dv∗v∗4J ∗
rs [
r,
s ]

≡ ω∗
rs

�d

∫
dv∗

1

∫
dv∗

2

∫
dσ̂
r(v

∗
1)
s(v

∗
2)
(
v′′∗4

1 −v∗4
1

)
, (A.19)
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where use has been made of the property (A.4). Henceforth, we will use
dimensionless quantities and, for the sake of simplicity, the asterisks will
be deleted. The scattering rule (A.5) gives

v′′4
1 −v4

1 = 2µ2
sr (1+αrs)

2(σ̂ ·g12)
2

[
2(σ̂ · v1)

2 +2v2
1 + µ2

sr

2
(1+αrs)

2(σ̂ ·g12)
2

]

−4µsr(1+αrs)(σ̂ ·g12)(σ̂ · v1)
[
v2

1 +µ2
sr (1+αrs)

2(σ̂ ·g12)
2
]
. (A.20)

Equations (A.8)–(A.10) allows the angular integral to be performed with
the result

∫
dσ̂

(
v′′4

1 −v4
1

)
= 4B2

d +2
µ2

sr (1+αrs)
2
[

2(v1 ·g12)
2 + d +4

2
g2

12v
2
1

+3
4
µ2

sr (1+αrs)
2g4

12

]

− 4B2

d +2
µsr(1+αrs)(v1 ·g12)

×
[
(d +2)v2

1 +3µ2
sr (1+αrs)

2g2
12

]
. (A.21)

Therefore, the collision integral �rs can be written as

�rs = ωrs

�d

B2µ
2
sr (1+αrs)

2
∫

dv1

∫
dv2
r(v1)
s(v2)

×
{

1
d +2

[
2(d +8)−12µsr(1+αrs)+3µ2

sr (1+αrs)
2 − 4(d +2)

µsr (1+αrs)

]
v4

1

+3
µ2

sr (1+αrs)
2

d +2
v4

2 + 2
d

[
d +2−6µsr(1+αrs)+3µ2

sr (1+αrs)
2
]
v2

1v2
2

}
.

(A.22)

Finally, by taking into account that

∫
dvv2
r(v)= d

2
θ−1
r , (A.23)
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we get

�rs = µsr(1+αrs)

d(d +2)
ω∗

rs

{
3µ3

sr (1+αrs)
3〈v∗4〉s

+
[
2d +3µ2

sr (1+αrs)
2 −6µsr(1+αrs)+4

]
[µsr(1+αrs)−2] 〈v∗4〉r

+d(d +2)

4
µsrθ

−1
r θ1

s (1+αrs)

[
2d +4+6µsr(1+αrs)

× (µsr (1+αrs)−2)

]}
. (A.24)

In the one-dimensional case (d = 1), Eq. (A.24) agrees with the results
derived in Ref. 32 for the scalar Maxwell model (i.e., with ω∗

rs ∝ xs). In
addition, for mechanically equivalent particles, the results of the single gas
are recovered, namely,(16)

�rs ≡� = ω

32d(d +2)
(1+α)

{[
12α2(α −1)+4α(4d +17)−12(3+4d)〈v4〉

]

+d(d +2)

4
(1+α)(4d −1−6α +3α2)

}
.(A.25)

APPENDIX B. DERIVATION OF THE TRANSPORT COEFFICIENTS

In this Appendix we will provide some details on the calculation of
the Navier–Stokes transport coefficients appearing in the expressions (40)–
(42) of the irreversible fluxes. Let us consider each flux separately.

B.1. Mass Flux

To first order, the mass flux j(1)

1 is defined as

j(1)

1 =m1

∫
dvVf

(1)

1 (v). (B.1)

To get this flux from Eq. (55), we need the collisional integral of m1V
which has been evaluated in the Appendix A. From the linearization of
Eq. (A.1), one has the result

∫
dvm1V

(
L1f

(1)

1 +M1f
(1)

2

)
=νj(1)

1 , (B.2)
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where ν is the collision frequency

ν = ρω12

dρ2
µ21(1+α12)= 4

d

ρ

n(m1 +m2)

(
θ1 + θ2

θ1θ2

)1/2

ν0(1+α12), (B.3)

and use has been made of Eq. (22) in the second equality. Next, we mul-
tiply both sides of Eq. (55) by m1V and integrate over V. The result is

(
∂

(0)
t +ν

)
j(1)

1 =−p

(
∂

∂x1
x1γ1

)

p,T

∇x1 − n1T1

p

(
1− m1p

ρT1

)
∇p. (B.4)

Note that the temperature ratio γ1 depends on the hydrodynamic state
through the concentration x1. The functional dependence of γ1 on x1 can
be obtained from the HCS condition (29) by using the expressions (27) for
the partial cooling rates ζ

(0)
r .

The mass flux has the structure given by Eq. (40). Dimensional anal-
ysis shows that D ∝T 1/2, Dp ∝T 1/2/p, and D′ ∝T 1/2. Consequently,

∂
(0)
t j(1)

1 = −ζ (0)
(
T ∂T +p∂p

)
j(1)

1

=


m1m2n

2ρ
ζ (0)D +ρ(Dp +D′)

(
∂ζ (0)

∂x1

)

p,T



∇x1

+ρζ (0)

p

(
3
2
Dp +D′

)
∇p − ρζ (0)

2T
Dp∇T . (B.5)

Upon deriving this expression use has been made of the identities

∂
(0)
t ∇T = −∇

(
T ζ (0)

)
=−ζ (0)∇T −T ∇ζ (0)

= −ζ (0)

2
∇T −T




(

∂ζ (0)

∂x1

)

p,T

∇x1 + ζ (0)

p
∇p



 , (B.6)

∂
(0)
t ∇p = −∇

(
pζ (0)

)
=−ζ (0)∇p −p∇ζ (0)

= −2ζ (0)∇p −p




(

∂ζ (0)

∂x1

)

p,T

∇x1 − ζ (0)

2T
∇T



 , (B.7)
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where we have taken into account that

∇ζ (0) =
(

∂ζ (0)

∂x1

)

p,T

∇x1 +
(

∂ζ (0)

∂p

)

x1,T

∇p +
(

∂ζ (0)

∂T

)

x1,p

∇T

=
(

∂ζ (0)

∂x1

)

p,T

∇x1 + ζ (0)

p
∇p − ζ (0)

2T
∇T , (B.8)

the two latter terms coming from ζ (0) ∝nT 1/2 =pT −1/2. Inserting Eq. (B.5)
into Eq. (B.4), one gets the expressions (60), (61), and (62) for the coeffi-
cients D, Dp, and D′, respectively.

B.2. Pressure Tensor

The pressure tensor P(1) can be written as

P(1) =P(1)

1 +P(1)

2 , (B.9)

where the partial contribution P(1)
r to the pressure tensor is

P(1)
r =mr

∫
dvVVf (1)

r (v). (B.10)

The linearization of Eq. (A.2) leads to the following expression for the col-
lisional integral of m1VV:

∫
dvm1VV

(
L1f

(1)

1 +M1f
(1)

2

)
= τ11P(1)

1 + τ12P(1)

2 , (B.11)

where

τ11 = ω11

d(d +2)
(1+α11)(d +1−α11)+2

ω12

d
µ21(1+α12)

×
[

1− µ21(1+α12)

d +2

]
, (B.12)

τ12 = −2
ω12

d(d +2)

ρ1

ρ2
µ2

21(1+α12)
2. (B.13)

Now, we multiply both sides of Eq. (55) (with r = 1) by m1VV and inte-
grate over V to get

(
∂

(0)
t + τ11

)
P

(1)

1,ij
+ τ12P

(1)

2,ij
=−p1�ijk�∇ku�, (B.14)
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where p1 =n1T1 and

�ijk� ≡ δikδj� + δi�δjk − 2
d

δij δk�. (B.15)

A similar equation can be obtained for P(1)

2 from (B.14) by interchanging
1↔2. The solution to Eq. (B.14) (and its corresponding counterpart) has
the form

P
(1)
r,ij =−ηr�ijk�∇ku�. (B.16)

According to Eq. (42), the shear viscosity coefficient η is given in terms of
the coefficients ηr by

η=η1 +η2. (B.17)

Dimensional analysis requires that ηr ∝T 1/2 and so,

∂
(0)
t P(1)

r =−ζ (0)

2
P(1)

r . (B.18)

Insertion of this relation into Eq. (B.14) yields the following set of coupled
equations for the two coefficients ηr :

(
τ11 − 1

2ζ (0) τ12

τ21 τ22 − 1
2ζ (0)

)(
η1
η2

)
=
(

p1
p2

)
. (B.19)

Its solution is given by Eq. (68).

B.3. Heat Flux

The heat flux q(1) can be written as

q(1) =q(1)

1 +q(1)

2 , (B.20)

where the partial contribution q(1)
r is given by

q(1)
r = mr

2

∫
dvV 2Vf (1)

r (v). (B.21)
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To get the explicit expressions for the fluxes q(1)
r we proceed in a similar

way as in the case of the pressure tensor. First, linearization of Eq. (A.17)
leads to

∫
dv

m1

2
V 2V

(
L1f

(1)

1 +M1f
(1)

2

)
=β11q(1)

1 +β12q(1)

2 +A12j(1)

1 , (B.22)

where

β11 =−ω11

4
(1+α11)

d(d +2)
[α11(d +8)−5d −4]−ω12µ21

(1+α12)

d(d +2)

×{µ21(1+α12) [d +8−3µ21(1+α12)]−3(d +2)} , (B.23)

β12 =−3ω12µ
3
21

(1+α12)
3

d(d +2)

ρ1

ρ2
, (B.24)

A12 =−ω11

8
(1+α11)

d(d +2)

[
α11(d

2 −2d −8)+3d(d +2)
] T1

m1
− ω12

2
µ21

(1+α12)

d

×
{
µ21(1+α12) [d −3µ21(1+α12)+2]

T2

m2

−x1

x2

[
d +3µ2

21(1+α12)
2 −6µ21(1+α12)+2

] T1

m2

}
. (B.25)

Upon writing Eq. (B.22) use has been made of the relation j(1)

1 = −j(1)

2 .
The corresponding expressions for β22, β21, and A21 can be easily obtained
from Eqs. (B.23)–(B.25) by the change 1↔2. From Eq. (55), one gets

(
∂

(0)
t +β11

)
q(1)

1 +β12q(1)

2 = −A12j(1)

1 − d +2
2

nT 2

m1

∂

∂x1

[(
1+ c1

2

)
x1γ

2
1

]
∇x1

−d +2
2

n1T
2
1

m1p

(
1− m1p

ρT1
+ c1

2

)
∇p

−d +2
2

n1T
2
1

m1T

(
1+ c1

2

)
∇T , (B.26)

where

cr = 2
d(d +2)

m2
r

nrT 2
r

∫
dvV 4f (0)

r −2. (B.27)

The coefficients cr have been obtained in Section 3.
The solution to Eq. (B.26) can be written as

q(1)
r =−T 2D′′

r ∇x1 −Lr∇p −λr∇T . (B.28)
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The total heat flux defines the transport coefficients D′′, L, and λ through
Eq. (41). According to Eqs. (B.20) and (B.28), these transport coefficients
are given in terms of their partial contributions D′′

r , Lr , and λr as

D′′ =D′′
1 +D′′

2 , L=L1 +L2, λ=λ1 +λ2. (B.29)

From dimensional analysis, D′′
r ∝ T −1/2, Lr ∝ T 3/2/p, and λr ∝ T 1/2.

Consequently,

∂
(0)
t q(1)

r =


3
2
ζ (0)T 2D′′

r +
(

∂ζ (0)

∂x1

)

p,T

(pLr +T λr)



∇x1

+ζ (0)

(
5
2
Lr + T λr

p

)
∇p + ζ (0)

(
λr − pLr

2T

)
∇T . (B.30)

Substitution of Eq. (B.30) into Eq. (B.26) and taking into account the
expression (40) for the mass flux, one arrives at the coupled set of Eqs.
(72) for the partial contributions D′′

r , Lr , and λr .
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